Acronyms, Formulas & Well Control Forms

Acronyms, Formulas & Well Control Forms

Acronyms

AER	Alberta Energy Regulator
Ann. Cap.	Annular Capacity
ADP	Annular Discharge Pressure
ALRP	As Low as Reasonably Practical
APL	Annular Pressure Loss
ASP	Applied Surface Pressure
BOP	Blowout Preventer
BHA	Bottomhole Assembly
BHP	Bottomhole Pressure
СР	Casing Pressure
CSG	Casing
СТ	Coiled Tubing
DC	Drill Collar
DP	Drill Pipe
DPP	Drill Pipe Pressure
DST	Drill Stem Testing
EOB	End of Build
EOBCP	End of Build Circulating Pressure
EOBMD	End of Build Measured Depth
EOBTVD	End of Build True Vertical Depth
ESD	Emergency Shut Down
EBHP	Effective Bottom Hole Pressure
ECD	Equivalent Circulating Density
EMD	Equivalent Mud Density
FCP	Final Circulating Pressure
FP	Formation Pressure
HP	Hydrostatic Pressure
HP/HT	High Pressure/High Temperature
HCR	High Closing Ratio (also known as ESD)
IADC	International Association of Drilling Contractors
ICP	Initial Circulating Pressure
KMD	Kill Mud Density
kPa	Kilopascal
КОР	Kick off Point
КОРСР	Kick off Point Circulating Pressure
KOPMD	Kick off Point Measured Depth
KOPTVD	Kick off Point True Vertical Depth
FLOC	Flocculated Water (used as a Drilling Fluid)

FOSV	Fully Opening Safety Valve
LOG	Leak-Off Gradient
LOP	Leak-Off Pressure
LWD	Logging-While-Drilling
MACP	Maximum Allowable Casing Pressure
MADFD	Maximum Allowable Drilling Fluid Density
MASP	Maximum Applied Surface Pressure
MDI	Mud Density Increase
MGS	Mud Gas Separator
MPD	Managed Pressure Drilling
MR	Mixing Rate
NMD	New Mud Density
OBM	Oil-Based Mud
ОК	Overkill
OMD	Original Mud Density
PBD	Pump Bore Diameter
PID	Proportional-Integral-Derivative
PO	Pump Output
PVT	Pit Volume Totalizer
PVT	Pressure, Volume, and Temperature
PWD	Pressure-While-Drilling
RCD	Rotating Control Device
RCH	Rotating Control Head
RS	Reduced Speed
RSPP	Reduced Speed Pump Pressure
ROP	Rate of Penetration
SAGD	Steam Assisted Gravity Drainage
SAPP	Sodium Acid Pyrophosphate (thinner/dispersant)
SICP	Shut-In Casing Pressure
SIDPP	Shut-In Drill Pipe Pressure
SL	Stroke Length
SLSWC	Second Line Supervisor's Well Control
SPM	Strokes per Minute
SPP	Standpipe Pressure
STKS	Strokes
TVD	True Vertical Depth
TMD	Total Measured Depth
UBD	Underbalanced Drilling
WBM	Water-Based Mud
WC	Well Control
WBE	Wellbore Barrier Element
WBS	Well Barrier Schematics

List of Formulas

TVD for Pressure Calculations	=	True Vertical Depth (m)
TMD for Volume Calculations	=	Total Measured Depth (m)
Hydrostatic Pressure(HP) (kPa)	=	TVD (m) × Mud Density (kg/m³) × 0.00981 <i>or</i> TVD (m) × Gradient (kPa/m)
Gradient (kPa/m)	=	Mud Density (kg/m ³) × 0.00981
Density (kg/m ³)	=	Mud Gradient (kPa/m) 0.00981
Formation Pressure (FP) (kPa)	=	HP (kPa) + SIDPP (kPa)
Equivalent Circulating Density (kg/m ³)	=	(APL (kPa) ÷ TVD (m) ÷ 0.00981) + Mud Density (kg/m ³)
Equivalent Mud Density (kg/m ³)	=	Total Pressure (kPa) ÷ TVD (m) ÷ 0.00981 or
		BHP (kPa) ÷ TVD (m) ÷ 0.00981
EBHP (kPa) (Drilling)	=	HP (kPa) + APL (kPa)
EBHP (kPa) (Trip Out)	=	HP (kPa) – Swab Pressure (kPa)
EBHP (kPa) (Trip In)	=	HP (kPa) + Surge Pressure (kPa)
Trip Margin Density Increase (kg/m³)	=	Trip Margin Pressure Required (kPa) ÷ TVD (m) ÷ 0.00981

Gas Expansion Formula (Boyles Law)

$$V^1 x P^1 = V^2 x P^2$$

Therefore:

$$V_2 = \left(\frac{V_1 \times P_1}{P_2}\right)$$

where:

- V_1 = Initial pit gain entering the wellbore (m³)
- P_1 = Initial pressure acting on the influx (kPa) (Formation Pressure)

V₂ = Expanded volume of gas (m³)

- P_2 = Pressure acting on the gas (kPa)
 - a) = HP above the bubble + New CP
 - b) = CP when gas at choke
 - c) = Degasser 100 kPa

Well Control Calculations

Density Increase (kg/m ³)	=	SIDPP (kPa) ÷ TVD (m) ÷ 0.00981
Kill Mud Density (KMD) (kg/m³)	=	Density Increase (kg/m ³) + OMD (kg/m ³)
Remaining SIDPP (kPa)	=	Orig SIDPP(kPa) - $\left(\frac{\text{Orig SIDPP}(kPa)x \text{ Stks Pmpd}}{\text{Stks to bit}}\right)$
Barite Required (kg/m ³) or	=	4,250 × Density Increase (kg/m ³) 4,250 - KMD(kg/m ³)
Calcium Carbonate Required (kg/m³)	=	2,760 × Density Increase (kg/m ³) 2,760 - KMD(kg/m ³)
Barite Required (kg)	=	Barite (kg/m ³) × Total Volume (m ³)
or Calcium Carbonate Required (kg)	=	Calcium Carbonate (kg/m ³) × Total Volume (m ³)
Number of Sacks of Barite	=	Barite Required (kg) or Barite Required (kg) 40(kg/sack) 20(kg/sack)

or

Number of Sacks of Calcium Carbonate	 <u>Calcium Carbonate Required (kg/m³)</u> 25(kg/sack)
	(Dependent on sack size delivered to location)
Mixing Rate (MR) (sacks/mi)	= <u>Number of Sacks</u> Reduced Circulating Time (min)
Initial Circulating Pressure (ICP) (kPa)	= RSPP (kPa) + SIDPP (kPa) + Overkill (kPa)
Final Circulating Pressure (FCP) (kPa)	$= \left(\frac{\text{RSPP (kPa)} \times \text{KMD (kg/m^3)}}{\text{OMD (kg/m^3)}}\right) + \text{Overkill (kPa)}$

Formulas specific to the Concurrent Method			
Density Increase (kg/m³)	= * <u>40 × Mix Rate × [4,250 – Original Density (kg/m³)]</u> 4,250 × PO (m3/min) + (40 × Mix Rate) or		
	= ** <u>25 × Mix Rate × [2,760 – Original Mud Density (kg/m³)]</u> 2,760 × PO (m ³ /min) + (25 × Mix Rate)		
FCP (kPa)	$= \left(\frac{\text{RSPP (kPa) \times NMD (kg/m^3)}}{\text{OMD (kg/m^3)}}\right) + \text{Remaining SIDPP (kPa)}$		
Remaining SIDPP (kPa)	 SIDPP(kPa) – [Density Increase(kg/m³) × Depth(m) × 0.00981] 		
or Remaining SIDPP (kPa)	= TVD (m) × Remaining MDI (kg/m ³) × 0.00981		
Note: * 40kg/sx (Dependent on sack size delivered to location) **25kg/sx (Dependent on sack size delivered to location)			

Volumetric Method

Volume to Bleed (m ³)	=	<u>Pressure Increase (kPa) × Annular Capacity (m³/m)</u> Mud Gradient (kPa/m)
Migration Rate (m/min)	=	<u>Change in SICP (kPa)</u> (Mud Gradient (kPa/m) × Time)

Leak-Off Calculations

LOP (kPa)	 Applied Surface Pressure (kPa) + HP at Casing Seat (kPa) or LOG (Leak-off Gradient) × Casing Depth (m)
Leak-off Gradient LOG (kPa/m)	= <u>LOP (kPa)</u> Depth of Casing (m)
Equivalent Mud Density EMD (kg/m³)	= <u>Leak-off Gradient (kPa/m)</u> 0.00981
MACP (kPa)	= LOP (kPa) – HP (kPa)
MACP with increased mud density (kPa)	 LOP at shoe (kPa) – New HP at casing shoe (kPa)

Fluid Level Drop While Pulling Dry and Wet Pipe

Pulling Dry Pipe (m) Drop in Fluid Level	=	Length of Pipe (m) × Displacement (m ³ /m) (Annular Capacity (m ³ /m) + Pipe Capacity (m ³ /m))
Pulling Wet Pipe (m) Drop in Fluid Level	=	Length of Pipe (m) × Wet Displacement (m ³ /m) Annular Capacity (m ³ /m)
Wet Displacement (m ³ /m)	=	Displacement of Pipe(m ³ /m) + Capacity of Pipe(m ³ /m)
Loss of HP	=	Drop in level (m) × Density (kg/m ³) × 0.00981

Pill Pumping Calculation

1. Length of Pill (m)	= $\frac{\text{Pill Volume (m^3)}}{\text{Drill Pipe Capacity (m^3/m)}}$
2. Differential Pressure (kPa)	 Length of Pill (m) × (Pill Gradient (kPa/m) – Mud Gradient (kPa/m))
3. Empty Pipe Length (m) after pill settles	= $\frac{\text{Differential Pressure (kPa)}}{\text{Mud Gradient (kPa/m)}}$
Recovery (m ³)	 Empty Pipe (m) × Drill Pipe Capacity (m³/m) or Volume of Pill (m³) × (Pill Density (kg/m³)/(Mud Density (kg/m³)) -1)

1. Fluid Required (L)	 Litres to Close Annular Preventer + Litres to Close Pipe Ram Preventers + Litres to Open Hydraulic Valve 		
Critical Sour	 Close Annular and Open HCR and Close, Open, Close One Ram and Shear Pipe in Use 		
2. Total Fluid Required (L) with 50% Safety Margin	 Fluid Required × 1.5 This value is to be used in the Accumulator Size formula below. Note: Safety margin is established by company policies and manufacturer's specifications. 		
3. Accumulator Size (L)	$= \left(\frac{\text{Remaining Pressure (kPa) \times Total Fluid Required (L)}}{\text{Pressure on Accumulator (kPa)}}\right) \times \left(\frac{\text{Pressure on Accumulator (kPa)}}{\text{Precharge Pressure (kPa)}}\right)$		
4. Bottles Required	= $\frac{\text{Accumulator Size in Litres}}{\text{Bottle Size (usable fluid)}}$		
Nitrogen Backup Calculations			
5. Usable Nitrogen/btl (L)	= $\left(\frac{\text{Bottle Pressure (kPa)}}{\text{Remaining Pressure (kPa)}} - 1\right) \times \text{Bottle Size (L)}$		
6. Nitrogen Bottles Required	= Fluid Required (without Safety Factor) Usable Nitrogen/btl (L)		

Pump Pressures

$$P_2 = P_1 \times \left(\frac{SPM_2}{SPM_1}\right)^2$$

where:

- P₂ = New pump pressure (kPa)
- P₁ = Original pump pressure (kPa)
- SPM₂ = Increased pump speed (strokes/min)
- SPM₁ = Original pump speed (strokes/min)

$$\mathsf{P}_2 = \mathsf{P}_1 \times \left(\frac{\mathsf{Q}_2}{\mathsf{Q}_1}\right)^2$$

where:

- P_2 = New pump pressure (kPa)
- P₁ = Original pump pressure (kPa)
- Q_2 = Increased flow rate (m³/m)
- Q_1 = Original flow rate (m³/m)

Rule of Thumb:

WBM Hydraulic Lag Time (Pressure Transmission) = 2sec/305m. Surface to TD

Ex. 3050m pressure lag = 20sec.

Kick Gradient

Longth of Kick (m)		Pit Gain (m ³)
	=	Annular Volume (m ³ /m)
		Appropriate drill string component (drill collars, HWDP or drill pipe)

*Gradient of Kick	(kPa/m)	= Gradient of Mud (kPa/r	n) $-\left[\frac{(\text{SICP (kPa)} - \text{SIDPP (kPa))}}{\text{Length of Kick (m)}}\right]$
		Gas Gradient	1.35 kPa/m - 2.70 kPa/m
		Oil Gradient	5.80 kPa/m - 8.15 kPa/m
		Water Gradient	9.80 kPa/m - 11.5 kPa/m
*Length of Kick	= (<u>(SICP-SI)</u> Gradient of Mud (kPa/m) – 0	DPP) Gradient of Kick (kPa/m)

*for vertical well only INC MACP FORM

*formula is not applicable to oil based or other muds into which a gas influx is soluble

Stripping and Snubbing Calculations

1,000 mm	=	1 m
Area (m²)	=	0.785 × Tool Joint Diameter(m) × Tool Joint Diameter(m) where: 0.785 = constant
Wellbore Force (daN)	=	Pressure × Area (m^2) × 100 where: Pressure = SICP (kPa) 100 = constant
Total Force Acting on String (daN)	=	Friction Force in BOP + Wellbore Force
Length of Pipe to Snub (m)	=	Total force (daN) ÷ Mass (kg/m) ÷ 0.981 where: 0.981 = constant Note: The constant 0.981 in the formula is required because the units are in decanewtons not Newtons.

List of Formula Units

daN	decaNewton
kg	kilogram
kPa	kiloPascal
L	Litre
m	metre
m²	square metre
m ³	cubic metre
mm	millimetre
min	minute
MPa	MegaPascal

Order of Operations (BEDMAS)

BEDMAS is an acronym that reminds us of the correct order of operations:

BEDMAS tells us that brackets are the highest priority, then exponents, then both division and multiplication, and finally addition and subtraction. This means that we evaluate exponents before we multiply, divide before we subtract, etc.

Example 1 (Brackets)

$$15 - (6 + 1) + 30 \div (3 \times 2)$$

BEDMAS tells us to evaluate what's in the brackets first. Therefore, we get the following:

$$15 - (6 + 1) + 30 \div (3 \times 2)$$

= 15 - 7 + 30 ÷ (3 × 2)
= 15 - 7 + 30 ÷ 6
= 15 - 7 + 5
= 8 + 5
= 13

Example 2 (Nested Brackets)

There is no limit on how many sets of brackets we can use in an equation. So you could see an expression that looks like this:

$$(8 - (5 + 1)) \times 3$$

To evaluate an expression like this, we simply follow BEDMAS twice! Once we notice the outer brackets, we realize that we need to first evaluate the sub-expression they contain using BEDMAS. Next, we notice the inner-brackets and then we realize that we need to evaluate that

sub-expression first.

A simple rule that summarizes this strategy is:

• When dealing with brackets inside brackets (called nested brackets), evaluate what's inside the inner-most brackets first.

Remember that this rule is just BEDMAS. It's nothing new. Using this rule, our sample expression would be evaluated as follows:

$$(8 - (5 + 1)) \times$$

= $(8 - 6) \times 3$
= 2×3
= 6

Example 3 (Exponents)

There are two important rules to remember when dealing with exponents:

3

- 1. Any number to the exponent 1 is equal to itself.
- 2. Any number (except for 0) to the exponent 0 is equal to 1.

$$2^{5} = 2 \times 2 \times 2 \times 2 \times 2 = 32$$

 $7^{0} = 1$
 $3^{2} = 3 \times 3 = 9$
 $5^{1} = 5$
 $0^{5} = 0$

Example 4

$$8 + 4 \times 3 \div 2$$

= $8 + 12 \div 2$
= $8 + 6$
= 14

From BEDMAS, we see that the division and multiplication must be done before the addition.

Forms

The Enform forms presented in the following pages as well as the Check List are guides to help **Prepare, Execute, and Review** the Well Control Procedures in this manual. These forms can be used for all well control methods. They are available here for your use in the field should you require them. Enform does not accept any liability whatsoever in there use or resulting outcomes on the

well.

Checklist

Used for Equipment and Data Check on pages Chapter 4-54 to 4-57

Well Control Data Sheets

Used to collect necessary data for well configurations listed below for all methods of well control:

- Vertical Hole
- Deviated Hole
- Vertical Liner
- Deviated Liner

Well Control Operations Record Sheet

Used to record all Kill Operations.

Well Control Kill Sheet

Used to calculate all the parameters required to kill the well with a weighted drilling fluid (mud):

- Casing: 1st Circulation for Concurrent and Low Choke.
- Casing: 2nd Circulation for Driller's, Wait & Weight, and Concurrent.
- Liner: 2nd Circulation for Driller's, Wait & Weight, and Concurrent.
- Deep Liner: Multiple strings DP, HWDP, DC.
- Well Control Kill Sheet Graph
 - Used to show the change from the Initial Circulating Pressure (ICP) to the Final Circulating Pressure (FCP) as the kill fluid is pumped down the Drill Pipe.
- Volumetric Method Kill Sheet
- Deviated Horizontal Kill Sheet
 - A pressure graphs used to show the change from ICP (Initial Circulating Pressure) to KOPCP (Kick off Point Circulating Pressure) to EOBCP (End of Build Circulating Pressure) to FCP (Final Circulating Pressure)

Blank Kill Sheet for Well Control

WELL:							6
			MD	TVD	UNITS		
Depth					m		i
Surface cas	ing – Specif	ications	•		mm		Well Diagram
		Set	at		m		Vertical Well
A	Annulus Len	gth (to liner to	op)		m		
BOP RATING	3	KPa					Surface
Interm	ediate Casir	1g –					Casing
Spe	ecifications						:
		Т	ор		m	1 1 f	
		Set	at		m		
КІСК	OFF POINT	Г (КОР)			m		
ENI	O OF BUILD	(EOB)			m		
							•
Hole Size					mm		
		DRILL STRIN	١G				
	Length	Specificatio	ons	Capacity	m3/m		
Push Pipe							
Drill Pipe							Intermediate Casir
Heavy Weight							
Drill Collars							
	Α	NNULAR CAP	ACITY				
DC to open ho	ole annular o	capacity			m³/m		
Tubulars in op	en hole anr	nular capacity			m³/m		
Tubulars in ca	sing annula	r Capacity			m³/m		Drill Dine
						ĨK	- Crintipe
Original Mud	Density (ON	/D)			Kg/m ³		
Leak Off Gradi	ient (LOG)				KPa/m		
	· · · · · ·						
	PU	IMP SPECIFICA	ATIONS			101	
Bo	ore Stro	ke Reduced Speed	RSP	PP [Displacement		
Pump #1							
Pump #2							
Surface Line V	olume *				m ³		·····
Mud Tank Vol	ume				m ³		
Shut in Drill Pi	pe Pressure	e (SIDPP)			КРа		W W
Shut In Casing	Pressure (S	SICP)			КРа		
Pit Gain		-			m ³] ; 📕 î	W
OverKill (If Use	ed)				КРа		
	<u> </u>						
* Account for	surface line	volume when	n pumping	g kill mud	to the bit.	***	No.
Reset strokes	when kill m	ud reaches flo	or, then	- follow dri	ll pipe	bas	· · ·
schedule pum	ping kill mu	d to the bit.			-		MD
•	-						
						1 · · · · · · · · · · · · · · · · · · ·	

Well MD		m	Well TVD		m	SI	СР		kPa	Pump Output		m³/stk
Kick Size		m ³	Shoe TVD		m	SI	DPP		KPa	Reduced Strokes		stks/min
		VOLUI	MES, DISPLAC	EMENT	TIMES	S AN	ID ST	ROKES –	- Use M	easured Depth (MD)		. <u> </u>
			Length	Сара	acity		V	olume (m³)	Strokes	М	inutes
			(m)	(m ³	/m)							
Strokes to	Displace	Surface	e Lines									
Surface to K	OP or BHA if Vort	tical)								(L)		
		licalj										
(Vertical W	ь /ell Leave	e Blank)								(M)		
EOB to BH	A									(N1)		
(Vertical W	/ell Leave	e Blank)										
Heavy Wei	ght Drill I	Pipe								(N2)		
Drill Collar										(N3)		
Drill String	Volume	(Surfac	e to Bit)				(D)					
DC in Oper	n Hole											
Tubulars ir	Open He	ole					(-)					
Open Hole	Volume	(Bit to o	casing Shoe)	(=)			(E)					
Washout	(Estimat	ted %)		(E) x 1	0%	1	.0%					
Open Hole	Volume	with W	ashout (Bit to	Surface)		(F)					
Tubulars ir	Casing						(G)					
Total Annu	ulus Volur	me			H=F+	G	(U)					
Total Well	System V	/olume	(Surface to Su	urface)	I=D+	Н	(I)					
										1		
Active Surf	face Volu	me					(J)					
Total activ	e Fluid Sy	/stem			=l+J							
Initial MACP – Use True Vertical Depth at Casing Shoe (TVD)												
LOP	LOP = Shoe TVD m × Leak off Gradient kPa/m = kPa								кРа			
НР	= Sh	noe TVD	0 m	× Origiı	nal M	ud [Densit	У	kg/	m ³ × 0.00981	=	kPa
Current M	ACP = LC)P	kPa	a			— H	1P	kPa	1	=	kPa
1	Mud Den	sity Inc	rease (MDI) =	SIDPP		k	Pa ÷	TVD	m	÷ 0.00981 =	kg/m	1 ³
ĸ	(ill Mud D	Density	= Original Mu	d Densit	y		kg	/m³ + M	MDI	kg/m ³ =	kg/n	n ³
			New MAG	CP with K	ill Mu	ud –	- Use	True Ve	rtical De	epth (TVD)		
New HP	= Sh	noe TVE) m	×	Kill N	Лud	Dens	ity	kg	/m ³ × 0.00981	=	kPa
New MAC	P = LC	OP	kPa	ì		_	New	HP	kP	a	=	kPa
BARITE REQUIREMENTS												
			4250kg/	m³ × Der	nsity l	ncre	ease		kg/m³			
Barite Req	uired =		4250kg/n	n ³ – Kill N	∕lud D	ens	sity	kg	g/m³		=	kg/m ³
Total Barite = Barite required kg/m ³ × Total active Fluid System m ³ = kg												
Number of	f Sacks =		·	Total	Barite	e 🗌		kg ÷	40 kg/sa	ack	=	Sacks
Mixing Rate (If mixed on the fly) = Number of Sacks ÷ Total Minutes = Sacks/min												
(for Concurrent Method Proceed to PG 4)												

PROCEED TO NEXT PAGE FOR CONCURRENT METHOD									
CIRCULATING PRESSURES									
ICP = RSPP kPa + SIDPP	kPa + OK kPa	= kPa							
FCP= RSPP kPa × Kill Mud Density Original Mud Density	kg/m ³ + OK kPa	= kPa							
RSPP with KMD at KOP (D)	(O)							
[FCP kPa – RSPP kPa]× TD MD	m + RSPPkPa	= kPa							
REMAINING SIDPP at KOP	(P)	(P)							
SIDPP kPa – [MDI kg/m ³ × KOP TVD m	× 0.00981]	= kPa							
CIRCULATING PRESSURE AT KOP (KOP	CP) = (O) + (P)	(KOP CP)							
(0)	kPa + (P) kPa	= kPa							
RSPP with KMD at EOB (R)	(R)							
[FCP kPa – RSPP kPa] × EOB MD TD MD]m+ RSPPkpa m	= kPa							
REMAINING SIDPP at EOB (S) (Note: if r	egative use "0")	(S)							
SIDPP kPa – [MDI kg/m ³ × EOB TVD	m × 0.00981]	= kPa							
CIRCULATING PRESSURE AT EOB (EOE	5 CP) = (R) + (S)	(EOB CP)							
(R)	kPa + (S) kPa	= kPa							
PUMP PRESSURE DROP / Increase per 100 strokes (Note: if negative, increase Pressure) Vertical Wells use top calculation only, Deviated and Horizontal wells require all three calculations below:									
Surface to KOP = [ICP kPa – KOP CP kPa] ×	100 (L) Strokes	— =kPa							
(Or TD if Vertical) (Or FCP if Vertical)	(Or Surface to bit if Vertical)								
KOP to EOB = [KOP CP kPa – EOB CP kPa] ×	100 (M) Strokes	— =kPa							
EOB to FCP = [EOB CP kPa – FCP CP kPa] ×	100 (N1, N2, N3) Strokes	— =kPa							

Г

FOR CONCURRENT METHOD ONLY								
First Circulation:								
Pump Output m3/stk × R.S stks/min = Pump Output m³/min								
$\begin{bmatrix} \text{Increase in Density} \\ (\text{This Circulation}) \end{bmatrix} = \begin{bmatrix} (40 \times \text{MR 1 sks/min}) \times (4250 - \text{OMD} \text{ kg/m}^3) \\ (4250 \times \text{Pump Output} \text{ m}^3/\text{min}) + 40 \times \text{MR 1 sks/min}) \end{bmatrix} = \begin{bmatrix} \text{kg/m}^3 \text{ kg/m}^3 \text{ kg/m}$								
New Mud Density = OMD kg/m ³ + Increase in Density kg/m ³ = kg/m ³								
BARITE REQUIREMENTS								
Barite Required =								
Total Barite= Barite required $kg/m^3 \times Total active Fluid System$ $m^3 =$ kg								
Number of Sacks = Total Barite kg ÷ 40 kg/sack = Sacks								
Mixing Rate (If mixed on the fly) = Number of Sacks								
CIRCULATING PRESSURES								
ICP = RSPP kPa + SIDPP kPa + OK kPa = kPa								
FCP= RSPP kPa × Kill Mud Density kg/m ³ + OK kPa = kPa Original Mud Density kg/m ³ + OK kPa = kPa								

PUN Verti	PUMP PRESSURE DROP / Increase per 100 strokes (Note: if negative, increase Pressure) Vertical Wells use top calculation only, Deviated and Horizontal wells require all three calculations below:							
Surf	ace to KOP = [ICP kPa –	KOP CP kPa] ×	100 (L) Strokes	— = kPa				
(Or T	D if Vertical)	(Or FCP if Vertical)	(Or Surface to bit if Vertical)					

Second Circulation:					
Remaining MDI = Total MDI	Required	kg/m ³ – Inc	rease in Density	kg/m ³	= kg/m ³
Remaining SIDPP =	TVD	m ×	Remaining MDI	kg/m ³ × (0.00981 = kPa
KMD = MDI	kg/m ³	+	OMD	kg/m ³	= kg/m ³
		BARITE RI	EQUIREMENTS		
	4250kg/m ³	× Density Incr	ease kg/	m ³	
Barite Required =	[4250kg/m ³ –	Kill Mud Den	sity kg/m ³	3]	= kg/m ³
Total Barite =	Barite required	kg/r	m ³ × Total active	e Fluid System	m ³ = kg
Number of Sacks =		Total Barite	kg ÷ 40 k	kg/sack	= Sacks
Mixing Rate (If mixed on the fly) = Nun	nber of Sacks	÷ Total	Minutes	= Sacks/min
ICP = RSPP	kPa	+ SIDPP	kPa	+ OK	kPa = kPa
FCP =RSPP k	Pa × Kill Mud Original	Density Mud Density [kg/m ³ kg/m ³	 + remaining SID 	PP kPa + OK kPa
					= kPa

	WELL CONTROL OPERATIONS RECORD SHEET								
WELL CO	ONTROL N	IETHOD: _							
Well:						Date:			
REC	ORD CIRCU	LATING PR	ESSURE	S EVERY 2 I		RECORDED KICK DATA			
		-	TANK	CHOKE		Reduced Speed - RS spm			
TIME	DPP	СР	GAIN	POSITION	REMARKS or	RS Pump Pressure - RSPP kPa			
(hrs:min)	(kPa)	(kPa)	(m ³)	(%)	PROBLEMS	Overkill - OK kPa			
			()			Stabilized SIDPP kPa			
						Stabilized SICP kPa			
						M.A.C.P. kPa			
						Initial Pit Gain 3			
						Mud (Drilling Fluid) Degetter			
						kg/m ³			
						CIRCULATING DRILL PIPE PPRESSURES			
						RSPP + kPa			
						SIDPP + kPa			
						OK + kPa			
						Initial Circulating Press ICP = kPa			
						Pump Strokes to Bit stk			
						Final Circulating Press FCP kPa			
						INITIAL KILL CASING PRESSURE			
						SICP + kPa			
						0K +kPa			
						Initial Kill CP =kPa			
						DPP REQUIRED TO CONTROL FORMATION			
						SIDPP + kPa			
						M.A.C.P. Increase - NO WEIGHT MATERIAL ADDED			
						Gas To Surface Time: min			
						Initial DPP @ RS kPa			
						Lowest DPP @ GTS - kPa			
						Allowable Increase in MACP = kPa			
						Original MACP + kPa			
						NEW MACP = kPa			
						WELL SHUT-IN @ : AM/PM			
						FINAL SHUT-IN PRESSURES			
				1		SIDPP SICP TIME			
╞───┤									
				1					

ΧХ

